Regional estimation of total recharge to ground water in Nebraska.

نویسندگان

  • Jozsef Szilagyi
  • F Edwin Harvey
  • Jerry F Ayers
چکیده

Naturally occurring long-term mean annual recharge to ground water in Nebraska was estimated by a novel water-balance approach. This approach uses geographic information systems (GIS) layers of land cover, elevation of land and ground water surfaces, base recharge, and the recharge potential in combination with monthly climatic data. Long-term mean recharge > 140 mm per year was estimated in eastern Nebraska, having the highest annual precipitation rates within the state, along the Elkhorn, Platte, Missouri, and Big Nemaha River valleys where ground water is very close to the surface. Similarly high recharge values were obtained for the Sand Hills sections of the North and Middle Loup, as well as Cedar River and Beaver Creek valleys due to high infiltration rates of the sandy soil in the area. The westernmost and southwesternmost parts of the state were estimated to typically receive < 30 mm of recharge a year.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lithologic influences on groundwater recharge through incised glacial till from profile to regional scales: Evidence from glaciated Eastern Nebraska

[1] Variability in sediment hydraulic properties associated with landscape depositional and erosional features can influence groundwater recharge processes by affecting soil-water storage and transmission. This study considers recharge to aquifers underlying river-incised glaciated terrain where the distribution of clay-rich till is largely intact in upland locations but has been removed by all...

متن کامل

MODIS-aided statewide net groundwater-recharge estimation in Nebraska.

Monthly evapotranspiration (ET) rates (2000 to 2009) across Nebraska at about 1-km resolution were obtained by linear transformations of the MODIS (MODerate resolution Imaging Spectroradiometer) daytime surface temperature values with the help of the Priestley-Taylor equation and the complementary relationship of evaporation. For positive values of the mean annual precipitation and ET differenc...

متن کامل

Net recharge vs. depth to groundwater relationship in the Platte River Valley of Nebraska, United States.

One-km resolution MODIS-based mean annual evapotranspiration (ET) estimates in combination with PRISM precipitation rates were correlated with depth to groundwater (d) values in the wide alluvial valley of the Platte River in Nebraska for obtaining a net recharge (Rn) vs. d relationship. MODIS cells with irrigation were excluded, yielding a mixture of predominantly range, pasture, grass, and ri...

متن کامل

Geochemical Evolution of Ground Water in the Great Plains (Dakota) Aquifer of Nebraska: Implications for the Management of a Regional Aquifer System

The Great Plains (Dakota) aquifer system is one of the most extensive in North America, extending from the Arctic Circle to New Mexico, and underlies approximately 94% of Nebraska. In Nebraska, we do not have the physical ground water monitoring data at the scale that is necessary to manage ground water flow systems. However, first-order management strategies for this regional aquifer can be de...

متن کامل

Groundwater recharge simulation using a coupled saturated-unsaturated flow model

Abstract The coupled MODFLOW-HYDRUS software package was used to produce a saturated-unsaturated flow model for a Flood Spreading System (FSS) and its associated aquifer. The study aim to improve simulations of near-surface hydrological processes, including temporal and spatial variation in groundwater recharge rates. The coupled model was built with average RMSE=1.1 and 1.3 for calibration ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ground water

دوره 43 1  شماره 

صفحات  -

تاریخ انتشار 2005